Skip to main content

Section C.1 Exercises

  1. Show that, for any sequence \(a_1,\dots,a_n\) of real numbers,
    \begin{equation*} \left(\sum_{i=1}^n a_i\right)^2 \leq \left(\sum_{i=1}^n|a_i|^{2/3}\right)\left(\sum_{i=1}^n|a_i|^{4/3}\right)\text{.} \end{equation*}
  2. Let \(X\) and \(X'\) be independent and identically distributed discrete random variables such that \(|\{x: \mathbb{P}(X=x)>0\}|=n\text{.}\) Prove that \(\mathbb{P}(X=X')\geq 1/n\text{.}\)