Skip to main content Contents
Prev Up Next \(\renewcommand{\glspostdescription}{}
\def\cprime{\char"7E }
\def\cdprime{\char"7F }
\def\eoborotnoye{\char'013}
\def\Eoborotnoye{\char'003}
\newcommand{\beq}[1]{\begin{equation}\label{#1}}
\newcommand{\eeq}{\end{equation}}
\newcommand{\weakstar}{weak${}^*$ }
\newcommand{\rng}{\operatorname{rng}}
\newcommand{\ex}{\operatorname{ex}}
\newcommand{\colex}{\prec_{\operatorname{colex}}}
\newcommand{\lex}{\prec_{\operatorname{lex}}}
\newcommand{\per}{\operatorname{per}}
\newcommand{\permat}{\operatorname{pm}}
\renewcommand{\hom}{\operatorname{hom}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\degree}{d}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 2 Chains, Antichains and Shadows
In this chapter, we continue our investigation of extremal properties of set systems. Here, the types of “constraints” that we focus on involve the subset relation on \(2^{[n]}\text{.}\)