We assume all of the \(x_i\) and \(y_i\) are positive (to avoid dividing by zero). The general case will follow easily from this. For \(1\leq i\leq n\text{,}\) let
\begin{equation*}
z_i:=\frac{|x_i|}{|y_i|^{q-1}}
\end{equation*}
and
\begin{equation*}
a_i:=|y_i|^q\text{.}
\end{equation*}
The function \(x^p\) is convex, and so Jensen’s Inequality tells us that
\begin{equation*}
\left(\frac{\sum_{i=1}^n a_iz_i}{\sum_{i=1}^na_i}\right)^p \leq \frac{\sum_{i=1}^n a_i z_i^p}{\sum_{i=1}^na_i}
\end{equation*}
\begin{equation*}
\Longrightarrow \frac{\sum_{i=1}^n a_iz_i}{\sum_{i=1}^na_i}\leq \left(\frac{\sum_{i=1}^n a_i z_i^p}{\sum_{i=1}^na_i}\right)^{1/p}
\end{equation*}
\begin{equation*}
\Longrightarrow \sum_{i=1}^n a_iz_i\leq \left(\sum_{i=1}^n a_i z_i^p\right)^{1/p}\left(\sum_{i=1}^na_i\right)^{(p-1)/p}\text{.}
\end{equation*}
Note that \(\frac{p-1}{p}=\frac{1}{q}\text{,}\) and so we can substitute that in for the last exponent in the above expression. Let’s also plug in the values of \(z_i\) and \(a_i\text{.}\) We get
\begin{equation*}
\sum_{i=1}^n|y_i|^q\left(\frac{|x_i|}{|y_i|^{q-1}}\right)\leq \left(\sum_{i=1}^n|y_i|^q\left(\frac{|x_i|}{|y_i|^{q-1}}\right)^p\right)^{1/p}\left(\sum_{i=1}^n|y_i|^q\right)^{1/q}
\end{equation*}
\begin{equation*}
\Longrightarrow \sum_{i=1}^n|x_iy_i|\leq \left(\sum_{i=1}^n|x_i|^p\right)^{1/p}\left(\sum_{i=1}^n|y_i|^q\right)^{1/q}
\end{equation*}
which is exactly what we set out to prove.